Modeling the Subsurface Evolution of Active Region Flux Tubes

نویسنده

  • Y. Fan
چکیده

I present results from a set of 3D spherical-shell MHD simulations of the buoyant rise of active region flux tubes in the solar interior which put new constraints on the initial twist of the subsurface tubes in order for them to emerge with tilt angles consistent with the observed Joy’s law for the mean tilt of solar active regions. Due to the asymmetric stretching of the Ω-shaped tube by the Coriolis force, a field strength asymmetry develops with the leading side having a greater field strength and thus being more cohesive compared to the following side. Furthermore, the magnetic flux in the leading leg shows more coherent values of local twist α ≡ J · B/B, whereas the values in the following leg show large fluctuations and are of mixed signs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new plan to connect aluminum tubes of subsurface structures

  In this study, a new method for joining aluminum tubes in subsurface structures using steel converting and aluminum welding are presented and reviewed. But near the weld area is under high thermal cycle and will cause residual stresses in heat affected zone. Therefore for assessment of proposed connection from the perspective of residual stress by using the finite element method welding of tu...

متن کامل

Formation of Active Regions: Observations and Theory

Active regions can be used as a diagnostic of the sub-photo-spheric activity. In this review I will discuss how the physical conditions in the subsurface layers of the Sun form and modify the three dimensional complex of the active region. Many characteristics of active regions are related to the conditions under which magnetic ux tubes are generated and to their evolution as they rise in the s...

متن کامل

Signatures of emerging subsurface structures in the Sun

The complex dynamics that lead to the emergence of active regions on the Sun are poorly understood. One possibility is that magnetic structures (flux tubes, etc.) rise from below the surface by self induction and convection that lead to the formation of active regions and sunspots on the solar surface. For space weather forecasting, one would like to detect the subsurface structures before they...

متن کامل

Helical Magnetic Fields in Solar Active Regions: Theory vs. Observations

The mean value of the normalized current helicity αp = B · (∇×B)/B 2 in solar active regions is on the order of 10 m, negative in the northern hemisphere, positive in the southern hemisphere. Observations indicate that this helicity has a subsurface origin. Possible mechanisms leading to a twist of this amplitude in magnetic flux tubes include the solar dynamo, convective buffeting of rising fl...

متن کامل

Kinematic active region formation in a three-dimensional solar dynamo model

We propose a phenomenological technique for modelling the emergence of active regions within a three-dimensional, kinematic dynamo framework. By imposing localized velocity perturbations, we create emergent flux tubes out of toroidal magnetic field at the base of the convection zone, leading to the eruption of active regions at the solar surface. The velocity perturbations are calibrated to rep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009